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ABSTRACT 
 

Although the classification of images has become one of the most important challenges, neural networks have had the most success with this task; this has shifted 
the focus towards architecture-based engineering rather than feature engineering. However, the enormous success of the convolutional neural network (CNN) 
is still far from comparable to the human brain's performance. In this context, a new and promising algorithm called a capsule net that is based on dynamic routing 
and activity vectors between capsules appeared as an efficient technique to exceed the limitations of the artificial neural network (ANN), which is considered to 
be one of the most important existing classifiers. This paper presents a new method-based capsule network with light-gradient-boosting-machine (LightGBM) 
classifiers for facial emotion recognition. To achieve our aim, there were two steps to our technique. Initially, the capsule  networks were merely employed for 
feature extraction. Then, using the outputs computed from the capsule networks, a LightGBM classifier was utilised to detect seven fundamental facial 
expressions. Experiments were carried out to evaluate the suggested facial-expression-recognition system's performance. The efficacy of our proposed method, 
which achieved an accuracy rate of 91%, was proven by its testing the results on the CK+ dataset. 

KEYWORDS 

Image classifications, LightGBM, machine learning, computer vision, CNN, deep learning 
CITATION 

Salem, T. and Abdelmoutia, T. (2021). Deep capsule network for facial emotion recognition. The Scientific Journal of King Faisal University: Basic and Applied Sciences, 22(2), 
130–5. DOI: 10.37575/b/cmp/210063 

 

1. Introduction 

Some tasks that are considered simple for the human brain, such as 
facial recognition, detection and segmentation, present a challenging 
problem for computer vision systems. These vision systems are 
created using predictive classification modelling, and they made 
progress in terms of the development of robust systems over the last 
decade with regard to use of this natural type of human 
communication (Black and Yacoob, 1995; Essa and Pentland, 1997; 
Terzopoulos and Waters, 1990; Yacoob and Davis, 1996). Nowadays, 
tasks relating to computer vision require efficiency at solving 
common problems like facial recognition, detecting objects, 
translating languages, age estimation and object segmentation. Even 
classical artificial intelligence and all of its complicated functions and 
instructions cannot solve these complex problems, which has led to 
the creation of new models of deep learning (Mellouk and Handouzi, 
2020), such as CNNs.  
However, CNNs experience considerable difficulties when trying to 
recognise small datasets, different poses and deformed objects, even 
though they require a lot of data for training. As a result of these 
challenges, a new architecture has been invented within the field of 
deep learning called capsule networks. They have met expectation 
levels as they have outperformed CNNs in relation to solving the 
problems mentioned above and giving highly accurate results in 
various fields (Hong et al., 2021; Tiwari and Jain, 2021).  
In this study, the system of inputting images into our model has been 
implemented, which is a new method based on deep learning for the 
detection of facial expressions to predict seven main facial 
expressions: fear, anger, surprise, happiness, sadness, contempt and 
disgust. 

2. Related Works 

In recent years, novel recognition frameworks (Kim et al., 2015; 
Liu et al., 2014; Ranzato et al., 2011) that have depended on the use 

of a CNN have produced impressive performances in terms of 
facial-expression-recognition systems; they have also been 
utilised for object recognition and feature extraction. A CNN 
with many convolutions and pooling layers can extract multi-
level and higher features from the local area or the full face, and 
they perform well in relation to facial-emotion-picture-feature 
classification. Furthermore, a range of convolutional neural-network 
architectures (Ko, 2018) has been modelled in several studies to 
identify emotions after the successful introduction of CNNs for 
various computer vision tasks. A CNN can extract features 
automatically, capturing all potential complicated non-linear 
relationships between them. They have also been demonstrated to 
have promising capabilities for emotion categorisation, as shown in 
certain studies (Mehendale, 2020; Minaee et al., 2021; Valdenegro-
Toro et al., 2019). 
Some techniques (Minaee et al., 2021; Valdenegro-Toro et al., 2019; 
Zeng et al., 2018) concentrate on creating new classifiers and feature 
extractors for emotion classification (Kim et al., 2013). Substituting the 
softmax layer with a classifier at the last step in the model of deep 
learning allows for finer tweaking of the lower-level features. 
However, because a CNN's underlying data representation ignores 
crucial spatial hierarchies between complex and simple objects, it 
cannot accomplish rotational invariance. Nonetheless, when it comes 
to facial emotion identification, a facial picture can be rotated or 
translated. The presence of a part is noted by the max-pooling layer 
in a CNN but not the spatial relationship between the parts 
themselves. As a result, there is no pose connection between lower-
level features that make up a higher-level feature. On the other hand, 
this connection is critical when developing solid high-level features 
that help categorisation; the goal is to present a network that can 
simulate an image's hierarchical connections. 
With regard to the extraction of features after studying works by 
Patrick et al. (2019), Tereikovska et al. (2019) and Zhang and Xiao, 
(2020), an architecture based on the capsule network is suggested, 
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which is a collection of neurons’ outputs that reflect several features 
of the same thing. A capsule network has several layers, each of which 
includes numerous capsules that were first presented by Sabour et al. 
(2017). In the last step of the facial-emotion-recognition (FER) 
system, the LightGBM classifier is applied to avoid all of the problems 
associated with CNNs, leading to a robust model for this system. 

3. Description and Backgrounds 

3.1. Facial Emotion Recognition: 
Humans need to convey their intentions and emotional state so that 
they can interact with their environment, and facial emotions are a 
natural way and the universal language that humans use for this 
purpose. Darwin's work was responsible for the first examination of 
emotion-based signals as expressed by human faces (Darwin and 
Prodger, 1998). Several studies have been conducted concerning FER 
because of its utility in many fields and other systems based on 
human–computer interactions, such as robotics and gaming, 
marketing, criminal interrogations, biometric technology and 
surveillance systems. In the last century, Friesen and Ekman (1976), 
Ekman (1993), Matsumoto (1992) completed research in relation to 
the FER phenomenon. The majority of the systems they employed 
attempted to recognise six prototypic emotion categories: 
happiness/disgust, anger/surprise and sadness/fear. Contempt was 
added later on in 1986 to the set of basic facial expressions.  
There are two main categories for FER systems based on their feature 
representations (Corneanu et al., 2016): dynamic sequences and 
static images (spatial information used to represent features). Starting 
with these two methods, multimodal systems have used many audio 
approaches as well as electrocardiograms (ECGs) and 
electroencephalographs (EEGs) to assist with the recognition of 
emotion. Leading on from this, nonverbal communication involves 
facial expressions. Factors such as tone of voice and the context of the 
words in the argument may distract the investigator and divert their 
attention away from observing the subject’s facially expressed 
emotion. However, the technology involved in automatic facial 
emotion recognition systems is not impacted by contextual 
interference. Medical treatment systems, psychiatric care, driver-
fatigue detectors, and computer-animation technology have made 
gains from the implementation of automatic FER methods. The seven 
basic emotions categories are attempted to be identified by the 
technology involved in facial emotion recognition systems. 
FER is based on three techniques (Corneanu et al., 2016; Sun et al., 
2017): extracting the appearance of features, deriving geometric 
features and utilising hybrid techniques. The geometric features of 
the face are obtained from elements of the face itself (the nose, the 
eyes, the eyebrows, the mouth, etc.) and face shapes. Meanwhile, 
appearance-based features are retrieved using the face’s texture, 
wrinkles and any furrows that are caused by facial emotions. Deep 
learning using CNNs’ architecture has become more popular 
throughout recent years because of its efficiency in extracting the 
features from image-based data, but it performs less well when the 
characteristics of the face are deformed. On the other hand, capsule 
networks can extract data from deformed images, and their intensive 
computation tasks can run on the graphics processing unit (GPU), 
which offers reliable results in a short amount of time.  

3.2. Capsule Networks’ Architecture: 
This architecture created by Hinton et al. (2011) originated to replace 
CNNs’ architecture. A capsule is a network of neutrons that accepts 
vectors as an input and an output, which is different from CNNs as 

they only accept scalar values. The capsule property of being 
equivariant gives it the ability to learn the deformations and the 
features of an image besides the viewing conditions. Then, each 
single capsule network contains a group of neurons in which their 
output represents a different feature for a similar characteristic. As a 
result, this advantage allows the system to recognise the entire face 
starting by recognising its elements. For example, when the CNN 
detects a face, it detects it even if it has an incorrect eye position. 
Therefore, equivariance makes sure that the features of the face are 
present and located in their natural position in the detected image. As 
a result, the efficiency of this property made it desirable for capsule 
networks.  
There are three main methods for capsule implementations in the 
literature: capsules based on dynamic routing where each capsule can 
call active capsules from the levels below (Sabour et al., 2017). Second, 
the capsule of transforming auto-encoders, which backpropagates the 
difference between target outputs and the actual ones, is used to learn 
the weights of the connections (Hinton et al., 2011). Third, rather than 
utilising vector outputs, Hinton suggested that the input and output of 
a capsule should be represented as matrices. The dynamic routing was 
also replaced with an approach called expectation maximization (EM) 
to decrease the size of the transformation matrices among capsules 
(Hinton et al., 2018). Capsules differentiate from classical CNNs that 
have been modified from scalar into vector features in capsules, and 
they use the dynamic routing method based on the same mechanism 
in place of the max-pooling layer. The use of max pooling was 
discontinued because it does not consider spatial relations and only 
retains prominent information, which makes the trained model 
incapable of recognising spatial positions between facial features. If 
the facial elements in an image are not organised in a natural order, 
CNNs still define them as faces; meanwhile, capsules work differently 
by using vectors to recognise faces out of order based on the spatial 
information that is already stored in the vector. This is the main 
disparity between the two methods. 
Capsule networks and and a LightGBM have been applied in relation 
to facial emotion image classification during this specific project. 
Mapping a matrix of pixel values to an emotion classification involves 
levels of abstraction that make it applicable for studying deep 
architectures. More importantly, the learned intermediate 
representations of face types, given that the forehead, eyes and lips 
are part of the overall picture, are more qualitatively interpretable. 
The model efficiently masters this particular classification task once 
these features are learned in supervised training. Furthermore, this 
deep engineering outperforms results from more shallow networks. 

3.3. Light Gradient Boosting Machine: 
In 2017 Ke et al. (2017) introduced a new learning algorithm – the 
LightGBM. This approach is based on the platform of a gradient- 
boosting decision tree (Friedman, 2001). LightGBM is very accurate 
and displayed a fast level of training efficiency with regard to lots of 
applications as opposed to traditional gradient-boosting decision 
trees, which are considered time-consuming and have computational 
complexities. In addition, the LightGBM method has been used 
successfully for regression (Singh et al., 2020) and classification (Yang 
and Shi, 2019). Its success gave the green light for new techniques to 
be used, including exclusive features bundling and one-sided 
gradient analysis. 
A leaf-wise leaf development methodology with depth limitation has 
been used. Information about the positioning of the level may at the 
same moment divide the leaves of the same stratum, making 
multithreading optimisation simple and allowing complexity to be 
controlled. That will lessen the quantity of errors and will raise the 
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degree of precision. Regarding the depth limitation of the leaf-wise, it 
can guarantee a high-productivity level as it is equipped to forestall 
the over-fitting simultaneously. The pace of the cache hit was 
streamlined, and the multithreading was upgraded. Meanwhile, 
LightGBM is a decision-making method that is built on a histogram-
based decision tree and employs histogram subtraction. This method 
has added the standards of a decision to the features of the category 
to dodge extra computational and memory overheads. It is made 
through the transformation of features into a one-hot characteristic 
with multi-dimensions. 

4. Experiments and Models 

In this section, the outlines of the specific model, experiments and 
training steps are presented. The model of our approach to be learned 
was developed with the following function: 

𝐹: (𝑋𝑗) → {𝑃𝑖  | 0 < 𝑖 < 7} 
The input of the function is any given image (𝑋𝑗), and it outputs the 
probability of belonging to each class (𝑃𝑖). The main challenge faced 
here was using a small dataset. The equation is divided into two 
functions within the architecture because of the dual utilisations: a) 
identifying the features of the image and b) using those features for 
the classification. An important aspect of our approach is achieved 
through a deep neural network, and a probability prediction is 
realised using a LightGBM classifier, which is explained in 
subsections 4.2 and 4.3. 

4.1. Pre-processing: 
First, the presence of noise has an impact on the accuracy of FER. As a 
result, the pre-processing step within FER systems is extremely 
important and demands careful filter selection. In our work, the 
picture may have noise or blurring artifacts at first, which might 
degrade recognition accuracy. To increase the image's overall quality, 
the image-appearance filters were applied, specifically the median 
filter (MF) and the histogram-equalization (HE) technique on the 
original CK+ database to optimise the model's solidity in relation to 
noise. The median filter's function computes the median of the 
entirety of the pixels’ values under the kernel window, and this result 
is used to replace the central pixel. This is highly effective for reducing 
random noise. The result is shown in Figure 1. Moreover, the HE 
technique was used to improve the picture’s contrast and normalise 
its illumination effects to remove any abnormalities in the its lighting 
and background noise. 

Figure 1: The Result of the First Step 

 

Second, the employment of a face detector is a critical stage in the 
recognition process, since the face is the only important aspect of the 
picture, and all facial landmarks associated with emotions are only 
found on this part of the body. Because of the head's changing poses 
or movements, detection is often incorrect or too difficult, meaning 
the majority of face-detection techniques are based on the face alone. 
For Viola and Jones (2001), this technique was a well-known and 
extensively used classic face-detection method that was freely 
accessible in various modes of implementation; moreover, it is highly 
capable of detecting faces that are facing forward. Indeed, it is more 

reliable than other detection algorithms, such as the deep dense face 
detector (DDFD) method, and it also consumes fewer resources and 
takes less time. Raw pictures may be cropped to retrieve the facial 
region using the identified face-bounding box. This approach can 
minimise the amount of time spent on computational calculations, 
and it is able to highlight the actual facial area. 
Finally, all cropped images were standardized to a uniform size of 
48x48 pixels. This step is necessary to shorten the processing time, as 
shown in Figure 2. 

Figure 2: The Result of Pre-Processing Step 

 Face-detection part 

using Viola and Jones’ 

technique + crop 

image 

 

  

 

Resizing the image 

 

4.2. Neural Network Architecture: 
Neural networks are the de-facto standard for most image-processing 
tasks. Especially when it comes to feature extraction, recent 
advancements in CNNs and their spatial invariance have shown 
significant improvements in terms of accuracy and scalability. 
Nevertheless, the key drawback of such an approach is the need for a 
large dataset and long training times. To train a large neural network 
to an acceptable level of accuracy, thousands of images are needed, 
yet this was not the case during our research; a dataset of around 
1,000 images was used. This makes learning which features to extract 
a significantly difficult problem. For this reason, in this research, the 
use of convolutional layers was limited. Instead, the capsule layers 
recently published by Sabour et al. (2017) were introduced. 

Capsule networks try to deal with a theoretical problem introduced 
by convolutional networks. One main element that affects the 
success of convolutional networks is their max-pooling layers. This 
pooling operation is the reason for the loss of valuable spatial 
information between layers in convolutional networks. This 
drawback is addressed using a dynamic routing algorithm, which 
selects information and sends it to upper layers but only to capsules that 
really match those features. Capsule networks have displayed on-par 
performances with convolutional networks but with a smaller number 
of training parameters. This fact makes capsule networks a good option 
to train networks with small datasets; hence, in this study, the 
applicability of capsule networks combined with a classical approach 
was explored. 
An overall summary of the layers used in the image-feature-
identification network is shown in Table 1. Those layers can be 
categorised into three main components in the model, namely the 
convolutional module, the capsule module and the feature-explanation 
module.  

Table 1: Composition of layers in neural network. 
Layer Units Parameters 

Convolutional 256 x (40x40) kernels 62464 
Primary Capsule 32 8-dim capsules 5308672 
Explain Capsule  7 16-dim capsules 7340032 

Fully Connected 1 100 neurons  11300 
Fully Connected 2 7 neurons 707 

 

• Convolutional module: this module was used to expand the features 
of the image. In a deep convolutional network, convolutional layers 
initially learn very low-level image features like colour densities and 
edges. Here, the same was done using a convolutional layer. 

• Capsule module: this is where the core functionality of the model lies. 
It has two layers; the layer of the primary capsule has 32 capsules, and 
each capsule has eight 9x9 kernels with a stride of two. There each 
capsule generates a 16x16x8 tensor, which is fed into the expansion 
layer that has seven capsules. Here, seven capsules were selected, 
which corresponds to the number of emotions in our classification. 

48 

48 
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The output of the capsules was expected to be an expansive feature 
regarding how the attributes show up on the image effect for each 
class.  

In order to optimise those predicted features, it was decided that a 
fully connected network would be utilised, which is known as a 
feature-explanation module. It has two layers with 100 and seven 
neurons, respectively. This whole deep neural network was trained as 
one separate network to perform the emotion classification task. Our 
deep capsule network architecture (Figure 3) has three main 
components: the convolutional layer, the capsule module, and the 
fully connected feature-expansion component. The representation of 
extracted features from the first fully connected layer was fed into the 
LightGBM classifier for further classification.  

Figure 3: Overall Architecture of our Model 

 

4.3. Classical Classifier: 
The accuracy achieved when using the deep neural networks in 
isolation could be improved by employing an ensemble model; an 
ensemble would be created using a classical classifier. The utilisation 
of classical approaches combined with a methodology like SVM is 
standard. Nevertheless, a classical classifier that was combined with 
the features extracted from a deep neural network was used here. 
During this research, several classifiers were tested but we finally 
settled on an LGBM classifier with 70 estimators. LGBM classifiers use 
Light GBM algorithm, which in turn utilise algorithms relating to tree-
based learning. The novelty of the LightGBM is that it grows trees 
vertically, while other algorithms do it horizontally. Since, it grows 
tree leaf-wise, it will then grow the leaf with the greatest delta loss, 
which reduces the occurrence of even greater losses compared to 
level-wise algorithms. 

4.4. Optimisation and Learning: 
The learning within this model is a two-part process. First, it needs to 
optimise and train the deep neural networks and then train the 
classical classifier with selected features that have selected 
dimensions. When training the neural network, it was done as an 
end-to-end process. The final target of the network is not feature 
engineering but doing a final prediction for detected emotion. It must 
optimize a cost function established with the intention in order to 
learn optimal settings. The categorical cross-entropy function is used 
to measure prediction accuracy: 

𝐿(𝑋𝑖 , 𝜃) =  − ∑ 𝑡𝑖 log 𝐹(𝑋𝑖)

𝐶

𝑖

 

Where 
 𝑋𝑖 : input image 
 𝜃 : parameters of the model 
 C: number of classes 
 𝑡𝑖 : the expected prediction 
The output is one-hot encoded; hence, 𝑡𝑖  is non-zero for only one 
class. The above equation tries to maximise the probability of that 

 
1https://sites.pitt.edu/~emotion/ck-spread.htm (with permission from copy right holder (©Jeffrey Cohn)) 

expected class. Moreover, since the probability of other classes is 
ignored, it has to use softmax activation in the last layer of the model. 
This makes sure the sum of all the probabilities equals one. After the 
deep learning model is trained to a sufficient level, an accuracy rate of 
about 91% using this model alone is achieved. Nevertheless, with an 
ensemble model, the improvement in accuracy could be enhanced. 
Before the final classification layer is completed, the feature 
representation for the image from the dense layer as an input to the 
LightGBM classifier is used. LightGBM is a classifier that is trained 
with an input vector of 100 dimensions that are compared with the 
class labels. 

4.5. Training and Dataset: 
Our models are trained on a machine with Windows 10 Professional, 
an Intel Xeon processor and a NVidia K80 GPU with a 24GB memory. 
As shown in Figure 4, the model was trained for 100 epochs; during 
this time, training accuracy grew from 20% to 97%. Also, as observed 
after 80 epochs, the model started to overfit, meaning it was suitable 
to use for the evaluations.  

Figure 4: Loss and Training Accuracy of our Model 

 

At the same time, the CK+ (Lucey et al., 2010) dataset was also used 
to train our dataset, which contains images belonging to the seven 
categories of emotions.1 Altogether, there 984 images. The dataset 
with a 0.7 ratio to the validation and training set was split. Owing to 
the database's dimensions, the validation set for testing was used as 
well. Different classes of dataset did not have the same number of 
images. Specifically, the image distribution was 135 image showing 
anger, 207 images of happiness, 249 images denoting surprise, 75 
images showcasing fear, 84 images displaying sadness, 177 images 
highlighting disgust and 57 images showing contempt. 

5. Results and Discussion 

In this research paper, our main model consists of a capsule-based 
feature extractor and a LightGBM classifier. The primary model 
obtained a 91% accuracy rate during the test with the CK+ dataset, as 
shown in Table 2. 

 Table 2: Accuracies Achieved for Test Set with Different Models 

 

Apart from this main model, a few other experiments were conducted 
in order to compare our approach with others, including a classical 
CNN-based image classifier and an SVM classifier. In addition, before 
integrating the LGBM classifier, only the capsule-based model was 
used as a benchmark for the expected results. Table 3 depicts the 
results achieved through these different approaches.  

Table 3: Matrix Confusion of our Approach 
Emotions Angry Contempt Disgust Happy Fear Surprise Sad 

Angry 0.9062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0938 
Contempt 0.0000 0.7391 0.0000 0.0000 0.1304 0.0000 0.1304 

Disgust 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 
Happy 0.0000 0.0182 0.0000 0.9455 0.0364 0.0000 0.0000 

Fear 0.1200 0.0400 0.0000 0.0000 0.8400 0.0000 0.0000 
Surprise 0.0000 0.0137 0.0000 0.0000 0.0548 0.8904 0.0411 

Sad 0.0870 0.0000 0.0000 0.0000 0.0000 0.0000 0.9130 
Accuracy 0.9061 = 90.61 % 

Model Accuracy 
CN- based model 0.814 

SVM classifier 0.746 
Capsule-based model 0.854 

Capsule feature extractor + LightGBM classifier 0.910 

https://sites.pitt.edu/~emotion/ck-spread.htm
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When the results of Table 3 are examined, a few important facts about 
the model can be noticed. Compared to other models, our proposed 
architecture has achieved very high levels of accuracy. This high 
accuracy rate can be attributed to two separate modules: the capsule 
feature extractor and the LightGBM classifier. Other baseline 
methods were conducted in order to get an understanding of this 
contribution.  

Usually, deep learning methods are very good at image classification 
and feature extraction, especially CNNs. Nevertheless, in our case, 
the convolutional layer-based method was only able to achieve 
81.4% accuracy. However, the model capsule layer-based was able to 
achieve 85.4% accuracy. This observation can be attributed to the size 
of the dataset that was used; our training dataset only had around 
600 images as capsule networks have a superior ability to converge 
using only a very small number of samples. That is because there is 
no data loss as in convolutional neural layers. Since CNN uses max-
pooling, which literally selects and keeps the most significant number 
in a matrix, which contrasts with the dynamic routing mechanism 
used in capsule layers, there could be high chance of data loss in 
convolutional layer-based models. 

In our research, a capsule network was only used for the purpose of 
feature extraction rather than classification. In order to make sure 
that this is the optimal method for extracting features, a SVM classifier 
was used and its results were compared its with those from the 
capsule-based model. The SVM-based model was only able to 
achieve 74.6% accuracy. This is because it does not have the 
advanced capability of capsule networks or convolutional networks 
to extract important features. Instead, SVM tries to use all of the 
features that are fed into the classifier model.  
As a final step in our experiment, our capsule model was integrated 
with an LightGBM classifier and was able to achieve around a 6% 
improvement in accuracy. This means it can be hypothesised that 
capsule networks are better feature extractors and the LGBM 
classifier can conduct better classifications when the dataset is small. 
The accuracies achieved with the final capsule model are not similar 
throughout all the six classes in the database. Below, Figure 5 
represents our obtained results of the proposed approach. 

Figure 5: Loss and Accuracy of our Model Validation 

 

Only the emotion class of disgust achieved 100% accuracy. This could 
be because significant visual cues are available in this category of 
pictures. Figure.6 highlights some samples from the disgust emotion 
category. 

Figure 6: Our CK+ Dataset with Samples from Disgust Category. 

 
 

In all the samples of the disgust category in Figure 6, there is a main 

common visual cue around the eyes. Among these faces, the eyes are 
shown as a continuous black shape; this feature might be the cause 
of there being such a high level of precision. In any of the other 
classes, such noteworthy features were not observed.  

6. Conclusions 

A novel technique for face emotion identification is provided in this 
research. The suggested system can extract feature points and 
recognise facial displays of emotion from pictures. However, the 
extraction of exact facial features may be a difficult process at times, 
and it generally necessitates a large number of calculations. Using 
capsule nets for the extraction of characterisations was proposed in 
our study, followed by the employment of LightGBM for the 
classification process. The average identification performance for 
facial expressions might be as high as 91% accurate. In comparison 
with some current methods, this outcome is highly promising. 
There are some ideas and many different experiments, tests 
adaptations that have been left open for future research. Upcoming 
work will concern itself with applying this model to other datasets (i.e. 
big datasets, multi-operation datasets and sequence videos). In 
addition, different methods using three-dimensional models will be 
tested and will integrate a new category of emotions. 
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